Count-Base Word Representation
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์นด์šดํŠธ ๊ธฐ๋ฐ˜์˜ ๋‹จ์–ด ํ‘œํ˜„์ด๋ž€ ์–ด๋–ค ๊ธ€์˜ ๋ฌธ๋งฅ ์•ˆ์— ๋‹จ์–ด๊ฐ€ ๋™์‹œ์— ๋“ฑ์žฅํ•˜๋Š” ํšŸ์ˆ˜๋ฅผ ์„ธ๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋™์‹œ ๋“ฑ์žฅ ํšŸ์ˆ˜๋ฅผ ํ•˜๋‚˜์˜ ํ–‰๋ ฌ๋กœ ๋‚˜ํƒ€๋‚ธ ๋’ค, ๊ทธ ํ–‰๋ ฌ์„ ์ˆ˜์น˜ํ™”ํ•ด์„œ ๋‹จ์–ด ๋ฒกํ„ฐ๋กœ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ํ…์ŠคํŠธ๋ฅผ ์œ„์™€ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์ˆ˜์น˜ํ™”ํ•˜๋ฉด, ํ†ต๊ณ„์ ์ธ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์„œ๋กœ ์ด๋ฃจ์–ด์ง„ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์„ ๋•Œ ์–ด๋–ค ๋‹จ์–ด๊ฐ€ ํŠน์ • ๋ฌธ์„œ๋‚ด์—์„œ ์–ผ๋งˆ๋‚˜ ์ค‘์š”ํ•œ ๊ฒƒ์ธ์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด๊ฑฐ๋‚˜, ๋ฌธ์„œ์˜ ํ•ต์‹ฌ์–ด ์ถ”์ถœ, ๊ฒ€์ƒ‰ ์—”์ง„์—์„œ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์˜ ์ˆœ์œ„ ๊ฒฐ์ •, ๋ฌธ์„œ๋“ค ๊ฐ„์˜ ์œ ์‚ฌ๋„ ๋“ฑ์˜ ์šฉ๋„๋กœ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋‹จ์–ด์— 1๋ฒˆ, 2๋ฒˆ, 3๋ฒˆ ๋“ฑ๊ณผ ๊ฐ™์€ ์ˆซ์ž๋ฅผ ๋งตํ•‘(mapping)ํ•˜์—ฌ ๋ถ€์—ฌํ•œ๋‹ค๋ฉด ์ด๋Š” ๊ตญ์†Œ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์— ํ•ด๋‹น๋ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ถ„์‚ฐ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์˜ ํ•ด๋‹น ๋‹จ์–ด๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ๋ณ€ ๋‹จ์–ด๋ฅผ ์ฐธ๊ณ ํ•ฉ๋‹ˆ๋‹ค. puppy(๊ฐ•์•„..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] Adaptive stock trading strategies with deep reinforcement learning methods
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
Adaptive stock trading strategies with deep reinforcement learning methods Wu, Xing, et al. "Adaptive stock trading strategies with deep reinforcement learning methods." Information Sciences 538 (2020): 142-158. Highlights - Gated Recurrent Unit is proposed to extract informative features from raw financial data. - Reward function is designed with risk-adjusted ratio for trading strategies for s..
Natural Language Processing with Disaster Tweets
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
Natural Language Processing with Disaster Tweets Predict which Tweets are about real disasters and which ones are not https://www.kaggle.com/c/nlp-getting-started Natural Language Processing with Disaster Tweets | Kaggle www.kaggle.com NLP ๊ณต๋ถ€๋ฅผ ํ•˜๋ฉด์„œ ์ดˆ๊ธฐ ๋…ผ๋ฌธ๋ถ€ํ„ฐ ํ•˜๋‚˜์”ฉ ๋ณด๋ฉด์„œ ์ž‘์„ฑํ•ด๋ณด๊ณ , ์ตœ์‹  ํŠธ๋ Œ๋“œ๋ฅผ ๊ณต๋ถ€ํ•ด๊ฐ€๋ฉด์„œ, ์ง์ ‘ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ถ€ํ„ฐ ๋ชจ๋ธ์„ ๋Œ๋ ค๋ณด๊ณ , ์ž์—ฐ์–ด๋ฅผ ์–ด๋–ป๊ฒŒ ์ฒ˜๋ฆฌํ•˜๋Š”์ง€ ๊ณผ์ •์„ ์ง์ ‘ ๊ฒฝํ—˜ํ•ด ๋ณด๊ณ  ์‹ถ์—ˆ๋‹ค. ์ฆ‰, NLP ๋ชจ๋ธ์„ ๋Œ๋ฆฌ๊ธฐ ์œ„ํ•œ ์ง์ ‘ ์ฝ”๋”ฉ์„ ํ•˜๊ณ  ์‹ถ์—ˆ๋‹ค. ๊ธฐ์กด์— BERT Model์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ..
New NLP Trands
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
Timkey, W. and van Schijndel, M. (2021) → Rogue(์ž‘์€ ๋ช‡๊ฐœ์˜ ์ฐจ์›) ๊ฐœ๋… ์ œ์•ˆ. → rogue๊ฐ€ ๋ชจ๋ธ์„ ์ขŒ์šฐํ•˜๋‹ˆ, ์ด๋ฅผ ์ œ์–ดํ•˜๋Š” postprocessing ํ…Œํฌ๋‹‰ ์ œ์•ˆ Paik, C., Aroca-Ouellette, S., Roncone, A., and Kann, K. (2021) → CoDa(์‚ฌ๋žŒ์ด ์ธ์ง€ ๊ฐ€๋Šฅํ•œ ์ƒ‰์„ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ) ๊ตฌ์„ฑ → PLM์˜ ํ•œ๊ณ„ ์ง€์ . (๋ณ‘๋ฐฑํ•˜๊ฒŒ ๋”ฑ ์ด๊ฑฐ๋‹ค! ๋ผ๊ณ  ๋งํ•˜๋Š” ์‚ฌ๋žŒx. ํ…์ŠคํŠธ๋งŒ์œผ๋กœ๋Š” ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ธ์ง€ํ•˜๋Š” ๊ฒƒ์— ๋ถ€์กฑํ•จ ๋ฐœ๊ฒฌ. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ธ์–ด ๋ชจ๋ธ์— ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ• ํƒ๊ตฌ Kalyan, A., Kumar, A., Chandrasekaran, A., Sabharwal, A., and Clark, P. (20..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Efficient Estimation of Word Representations in Vector Space
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
2022.02.20 - [Artificial_Intelligence/Papers] - [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Distributed Representations of Words and Phrases and their Compositionality [๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Distributed Representations of Words and Phrases and their Compositionality ใ„ดDistributed Representations of Words and Phrases and their Compositionality Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advance..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Distributed Representations of Words and Phrases and their Compositionality
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
Distributed Representations of Words and Phrases and their Compositionality Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013). Abstract (Eng.) The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that cap..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]A Neural Probabilistic Language Model
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
A Neural Probabilistic Language Model Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. "A neural probabilistic language model." Advances in Neural Information Processing Systems 13 (2000). NPLM์€ ๋‹จ์–ด๋ฅผ ์ž„๋ฒ ๋”ฉํ•˜์—ฌ ๋ฒกํ„ฐ๋กœ ๋ฐ”๊พธ๋Š” ๊ณผ์ •์—์„œ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์—ฌ ํ–ฅํ›„ Word2Vec์œผ๋กœ ๊ฐ€๋Š” ๊ธฐ๋ฐ˜์ด ๋˜์—ˆ๋‹ค๊ณ ํ•œ๋‹ค. ๊ฐ„๋‹จํ•˜๊ฒŒ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜์ง€ ์•Š๋Š” n-gram์ด ํฌํ•จ๋œ ๋ฌธ์žฅ์ด ๋‚˜ํƒ€๋‚  ํ™•๋ฅ ์„ 0์œผ๋กœ ๋งค๊ธด๋‹ค n์„ 5์ด์ƒ์œผ๋กœ ์„ค์ •ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฌธ์žฅ์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•ด๋‚ด๊ธฐ ์–ด๋ ต๋‹ค. ๋‹จ์–ด/๋ฌธ์žฅ ๊ฐ„ ์œ ์‚ฌ๋„๋Š” ๊ณ ๋ ค ํ•˜์ง€ ์•Š๋Š”๋‹ค. neural n..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Generative Question Refinement with Deep Reinforcement
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
Generative Question Refinement with Deep Reinforcement Liu, Ye, et al. "Generative question refinement with deep reinforcement learning in retrieval-based QA system." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019. Abstract ์‹ค์ œ QA ์‹œ์Šคํ…œ์—์„œ ์ž˜๋ชป๋œ ๋‹จ์–ด, ์ž˜๋ชป๋œ ๋‹จ์–ด ์ˆœ์„œ, ๋…ธ์ด์ฆˆ ๊ฐ™์€ ์ž˜๋ชป๋œ ํ˜•์‹์˜ ์งˆ๋ฌธ๋“ค์ด ์ผ๋ฐ˜์ ์ด์—ฌ์„œ QA ์‹œ์Šคํ…œ์ด ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์ดํ•ดํ•˜๊ณ  ๋‹ต๋ณ€์„ ๋˜์ง€์ง€ ๋ชปํ•˜๊ฒŒ ๋งŒ๋“ฌ. ์ด๋Ÿฌํ•œ ์ž˜๋ชป๋œ ํ˜•์‹์˜ ์งˆ๋ฌธ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜๊ธฐ ..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Multi-DQN An ensemble of Deep Q-learning agents for stock market forecasting
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
Multi-DQN An ensemble of Deep Q-learning agents for stock market forecasting Carta, Salvatore, et al. "Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting." Expert systems with applications 164 (2021): 113820. ์ฃผ์š” ํ•˜์ด๋ผ์ดํŠธ A novel ensembling methodology of RL agents with different training experiences. Validation of such ensemble in intraday stock market trading. Different ..
ํ•œ๊ตญ์–ด ๋ฌธ์„œ ์š”์•ฝ ํ‘œํ˜„ ๋…ผ๋ฌธ ์ •๋ฆฌ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
1) ์ถ”์ถœ์  ์š”์•ฝ(extractive summarization) ์ถ”์ถœ์  ์š”์•ฝ์€ ์›๋ฌธ์—์„œ ์ค‘์š”ํ•œ ํ•ต์‹ฌ ๋ฌธ์žฅ ๋˜๋Š” ๋‹จ์–ด๊ตฌ๋ฅผ ๋ช‡ ๊ฐœ ๋ฝ‘์•„์„œ ์ด๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์š”์•ฝ๋ฌธ์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ์ถ”์ถœ์  ์š”์•ฝ์˜ ๊ฒฐ๊ณผ๋กœ ๋‚˜์˜จ ์š”์•ฝ๋ฌธ์˜ ๋ฌธ์žฅ์ด๋‚˜ ๋‹จ์–ด๊ตฌ๋“ค์€ ์ „๋ถ€ ์›๋ฌธ์— ์žˆ๋Š” ๋ฌธ์žฅ๋“ค์ž…๋‹ˆ๋‹ค. ์ถ”์ถœ์  ์š”์•ฝ์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ ํ…์ŠคํŠธ๋žญํฌ(TextRank)๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. 2) ์ถ”์ƒ์  ์š”์•ฝ(abstractive summarization) ์ถ”์ƒ์  ์š”์•ฝ์€ ์›๋ฌธ์— ์—†๋˜ ๋ฌธ์žฅ์ด๋ผ๋„ ํ•ต์‹ฌ ๋ฌธ๋งฅ์„ ๋ฐ˜์˜ํ•œ ์ƒˆ๋กœ์šด ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•ด์„œ ์›๋ฌธ์„ ์š”์•ฝํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋งˆ์น˜ ์‚ฌ๋žŒ์ด ์š”์•ฝํ•˜๋Š” ๊ฒƒ ๊ฐ™์€ ๋ฐฉ์‹์ธ๋ฐ, ๋‹น์—ฐํžˆ ์ถ”์ถœ์  ์š”์•ฝ๋ณด๋‹ค๋Š” ๋‚œ์ด๋„๊ฐ€ ๋†’์Šต๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ฃผ๋กœ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๋Œ€ํ‘œ์ ์ธ ๋ชจ๋ธ๋กœ seq2seq๊ฐ€ ์žˆ..
Liky
'Artificial_Intelligence๐Ÿค–' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (4 Page)