DBLP DataSet Processing / ๋Œ€์šฉ๋Ÿ‰ Json ํŒŒ์‹ฑ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
๊ทธ๋ž˜ํ”„ ์ž„๋ฒ ๋”ฉ์„ ๊ณต๋ถ€ํ•˜๊ธฐ ์œ„ํ•œ DataSet์œผ๋กœ DBLP๋กœ ์ •ํ•˜๊ณ  ์ด๋ฅผ ๊ฐ€์ ธ์™€๋ณด์•˜๋‹ค. https://www.aminer.org/citation AMiner www.aminer.org ์ด ๊ณณ์— ๋“ค์–ด๊ฐ€์„œ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์™€์„œ ๋‹ค์šด๋กœ๋“œ๋ฅผ ๋ฐ›์•˜๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ๋ฌธ์ œ๋Š” ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ ธ์™€์„œ ์ „์ฒ˜๋ฆฌ๋ฅผ ํ•ด์•ผํ•˜๋Š”๋ฐ ์šฉ๋Ÿ‰์ด 16.1GB ์ด๋‹ค.. ์›ฌ๋งŒํ•œ ์—๋””ํ„ฐ๋กœ ์—ด๋ฆฌ์ง€๋„ ์•Š๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•ด์•ผํ•ด์„œ ๋ง‰๋ง‰ํ–ˆ์—ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ƒ๊ฐํ•œ ๊ฒƒ์ด ๋ฐ์ดํ„ฐ๋ฅผ ์šฉ๋Ÿ‰์„ ์ •ํ•ด์„œ ์ž๋ฅด๊ณ , ์ž๋ฅธ ์ฝ”๋“œ๋ฅผ ์ˆ˜์ž‘์—…์œผ๋กœ ์กฐ๊ธˆ๋งŒ ์†๋ด์ฃผ์ž๊ณ  ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋‚ด๊ฐ€ ์‚ฌ์šฉํ•œ ํ”„๋กœ๊ทธ๋žจ์€ GSplit 3 ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฐ€์ ธ์˜จ DBLP JsonํŒŒ์ผ์„ ๊ฐ€์ ธ์™€์„œ 1GB์”ฉ ๋จผ์ € ์ž˜๋ž๋‹ค. ์ด๋ ‡๊ฒŒ ๋˜๋ฉด, ๋”•์…”๋„ˆ๋ฆฌ๋กœ ์ž๋ฅด๋Š” ๊ฒƒ์ด ์•„๋‹Œ ์šฉ๋Ÿ‰์œผ๋กœ ์ž๋ฅด๊ธฐ์— Json ํ˜•์‹์ด ๊นจ์ง€๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ..
[NPLM] A Neural Probabilistic Language Model ๋…ผ๋ฌธ๋ฆฌ๋ทฐ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
A Neural Probabilistic Language ModelYoshua Bengio,Réjean Ducharme,Pascal Vincent,Christian Janvin2003๋…„ 3์›” 1์ผNPLM์€ ๋‹จ์–ด๋ฅผ ์ž„๋ฒ ๋”ฉํ•˜์—ฌ ๋ฒกํ„ฐ๋กœ ๋ฐ”๊พธ๋Š” ๊ณผ์ •์—์„œ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์—ฌ ํ–ฅํ›„ Word2Vec์œผ๋กœ ๊ฐ€๋Š” ๊ธฐ๋ฐ˜์ด ๋˜์—ˆ๋‹ค๊ณ ํ•œ๋‹ค.๊ฐ„๋‹จํ•˜๊ฒŒํ•™์Šต ๋ฐ์ดํ„ฐ์— ์กด์žฌํ•˜์ง€ ์•Š๋Š” n-gram์ด ํฌํ•จ๋œ ๋ฌธ์žฅ์ด ๋‚˜ํƒ€๋‚  ํ™•๋ฅ ์„ 0์œผ๋กœ ๋งค๊ธด๋‹คn์„ 5์ด์ƒ์œผ๋กœ ์„ค์ •ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฌธ์žฅ์˜ ์žฅ๊ธฐ ์˜์กด์„ฑ์„ ํฌ์ฐฉํ•ด๋‚ด๊ธฐ ์–ด๋ ต๋‹ค.๋‹จ์–ด/๋ฌธ์žฅ ๊ฐ„ ์œ ์‚ฌ๋„๋Š” ๊ณ ๋ ค ํ•˜์ง€ ์•Š๋Š”๋‹ค.neural net์„ ์“ฐ๊ธฐ ์ด์ „์—๋Š” smoothing( ์ž‘์€ ์ƒ์ˆ˜๋ฅผ ๋”ํ•ด์„œ 0์ด ์•ˆ๋‚˜์˜ค๋„๋ก) ๋˜๋Š” backoff๋ฅผ ์‚ฌ์šฉํ•ด์„œ data sparcity๋ฅผ ํ•ด๊ฒฐํ–ˆ๋‹ค. long-te..
JSON
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
Java Script Object Notation ์˜ ์•ฝ์ž์ด๋‹ค. json์€ ๋‹จ์ˆœํ•œ ๋ฐ์ดํ„ฐ ํฌ๋ฉง์ด๋‹ค. ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œ์‹œํ•˜๋Š” ๋ฐฉ๋ฒ•์ผ ๋ฟ์ด๋‹ค. ์†์„ฑ-๊ฐ’ ์Œ / ํ‚ค-๊ฐ’ ์Œ json์„ ์“ฐ๋Š” ์ด์œ  jsonํŒŒ์ผ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์•„์„œ ๊ฐ์ฒด๋‚˜ ๋ณ€์ˆ˜์— ํ• ๋‹นํ•ด์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค json์˜ ๊ตฌ์กฐ 1. Object(๊ฐ์ฒด) name/value ์˜ ์ˆœ์„œ์Œ์œผ๋กœ set์ด๋‹ค. {} ๋กœ ์ •์˜๋œ๋‹ค. ex) { "์ด๋ฆ„" : "ํ™๊ธธ๋™" } 2. Array(๋ฐฐ์—ด) ex) [ 10, "array", 32 ] ์ „์ฒด์ ์ธ ๊ตฌ์กฐ { "์ด๋ฆ„": "ํ™๊ธธ๋™", → ์ŠคํŠธ๋ง "๋‚˜์ด": 25, → ์ˆซ์ž (์ •์ˆ˜) "ํŠน๊ธฐ": ["๋†๊ตฌ", "๋„์ˆ "], → list ํ‘œํ˜„ ๊ฐ€๋Šฅ "๊ฐ€์กฑ๊ด€๊ณ„": {"์•„๋ฒ„์ง€": "ํ™ํŒ์„œ", "์–ด๋จธ๋‹ˆ": "์ถ˜์„ฌ"}, → array ํ‘œํ˜„ ๊ฐ€..
(NLP)Embedding
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
๋ฐ€์ง‘ํ‘œํ˜„์ด๋ž€ํฌ์†Œํ‘œํ˜„๋œ ๋‹จ์–ด๋ฅผ ์ž„์˜์˜ ๊ธธ์ด์˜ ์‹ค์ˆ˜ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด ๊ณผ์ •์„ ์›Œ๋“œ ์ž„๋ฒ ๋”ฉ์ด๋ผ ํ•˜๋ฉฐ, ๋ฐ€์ง‘ ํ‘œํ˜„๋œ ๊ฒฐ๊ณผ๋ฅผ ์ž„๋ฒ ๋”ฉ ๋ฐฑํ„ฐ๋ผ ํ•จ.์ž์—ฐ์–ด์ฒ˜๋ฆฌ(Natural Language Processing)๋ถ„์•ผ์—์„œ์˜ ์ž„๋ฒ ๋”ฉ์ด๋ž€์‚ฌ๋žŒ์ด ์“ฐ๋Š” ์ž์—ฐ์–ด > ๊ธฐ๊ณ„๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์ˆซ์žํ˜•ํƒœ์˜ vector๋กœ ๋ฐ”๊พธ๋Š” ๊ณผ์ • ๋ฐ ๊ฒฐ๊ณผ ์ž„๋ฒ ๋”ฉ์˜ ์—ญํ• ๋‹จ์–ด/๋ฌธ์žฅ ๊ฐ„ ๊ด€๋ จ๋„ ๊ณ„์‚ฐ๋Œ€ํ‘œ์  ์ž„๋ฒ ๋”ฉ ๊ธฐ๋ฒ• : Word2Vec์ปดํ“จํ„ฐ๊ฐ€ ๊ณ„์‚ฐํ•˜๊ธฐ ์‰ฝ๋„๋ก ๋‹จ์–ด๋ฅผ ์ „์ฒด ๋‹จ์–ด๋“ค๊ฐ„์˜ ๊ด€๊ณ„์— ๋งž์ถฐ ํ•ด๋‹น ๋‹จ์–ด์˜ ํŠน์„ฑ์„ ๊ฐ–๋Š” ๋ฒกํ„ฐ๋กœ ๋ฐ”๊พธ์–ด ๋‹จ์–ด๋“ค ์‚ฌ์ด์˜ ์œ ์‚ฌ๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์ผ์ด ๊ฐ€๋Šฅํ•ด์ง.์ž„๋ฒ ๋”ฉ์„ ํ•˜๋ฉด ๋ฒกํ„ฐ ๊ณต๊ฐ„์„ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ์‹œ๊ฐํ™” ๊ฐ€๋Šฅ์˜๋ฏธ์ /๋ฌธ๋ฒ•์  ์ •๋ณด ํ•จ์ถ•์‚ฌ์น™์—ฐ์‚ฐ ๊ฐ€๋Šฅ.๋ฒกํ„ฐ๊ฐ„ ๋ง์…ˆ/๋บ„์…ˆ ๋“ฑ์„ ํ†ตํ•ด ๋‹จ์–ด๋“ค ์‚ฌ์ด์˜ ์˜๋ฏธ์ , ๋ฌธ๋ฒ•์  ๊ด€๊ณ„ ๋„์ถœ ๊ฐ€๋Šฅ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ์„..
Graph
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
๋…ธ๋“œ์™€ ๊ทธ ๋…ธ๋“œ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฐ„์„ ์„ ํ•˜๋‚˜๋กœ ๋ชจ์•„ ๋†“์€ ์ž๋ฃŒ๊ตฌ์กฐ.์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š” ๊ฐ์ฒด๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์ž๋ฃŒ๊ตฌ์กฐ. ๊ทธ๋ž˜ํ”„(Graph) ์šฉ์–ด์ •์ (vertex): ์œ„์น˜๋ผ๋Š” ๊ฐœ๋…. (node ๋ผ๊ณ ๋„ ๋ถ€๋ฆ„)๊ฐ„์„ (edge): ์œ„์น˜ ๊ฐ„์˜ ๊ด€๊ณ„. ์ฆ‰, ๋…ธ๋“œ๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ์„  (link, branch ๋ผ๊ณ ๋„ ๋ถ€๋ฆ„)์ธ์ ‘(Adjacency) ์ •์  x์™€ ์ •์  y๊ฐ€ ๊ฐ„์„ ์— ์˜ํ•ด ์—ฐ๊ฒฐ๋˜์–ด์ ธ ์žˆ๋‹ค๋ฉด, ์ด๋“ค ๋‘ ์ •์  x์™€ y๋ฅผ ์ธ์ ‘(Adjacent)๋˜์–ด์žˆ๋‹ค๊ณ  ํ•œ๋‹ค.์ธ์ ‘ ์ •์ (adjacent vertex): ๊ฐ„์„ ์— ์˜ ํ•ด ์ง์ ‘ ์—ฐ๊ฒฐ๋œ ์ •์ ๋ถ€์†(Incident)์ •์  ์‚ฌ์ด์— ์—ฐ๊ฒฐ๋œ ๊ฐ„์„ ์„ ๋‘ ์ •์  X์™€ Y์— ๋ถ€์†๋˜์–ด์žˆ๋‹ค๊ณ  ํ•œ๋‹ค.์ •์ ์˜ ์ฐจ์ˆ˜(degree): ๋ฌด๋ฐฉํ–ฅ ๊ทธ๋ž˜ํ”„์—์„œ ํ•˜๋‚˜์˜ ์ •์ ์— ์ธ์ ‘ํ•œ ์ •์ ์˜ ์ˆ˜๋ฌด๋ฐฉํ–ฅ ๊ทธ๋ž˜ํ”„์— ์กด์žฌํ•˜๋Š” ์ •์ ์˜ ..
Solve Titanic problem with Reinforcement Learning
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
Introduction - Classification, Prediction using RL like DQN. - Different Existing deep learning is a method of increasing the accuracy of a model through a network. DQN is a reinforcement learning method in which Q values are selected and acted through a model. - Usually, RL does not used to solve classification or Prediction problems. DQN code used in the game is analyzed and refactored to be u..
DQN, A3C
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
DQN (Deep Q Network) DQN is learning using deep learning neural networks such as CNN. Method of storing samples obtained from each time step, randomly selecting these samples to configure and update them into mini-batches. Existing RL, once it start learning in a bad way, it continue learning in a bad way. The problem is solved by randomly extracting and breaking the correlation between samples...
Multi-Agent Reinforcement Learning
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
MARL(Multi-Agent Reinforcement Learning) - Trying to study Multi-Agent Algorithms in reinforcement learning. - For collaboration or competition, it is a field in which multiple agents interact with each other and find optimal behavior. - In reality, in order for Reinforcement learning to actually apply, the characteristics of various fields must be considered, so multi-agent consideration is ess..
Neural Style Transfer - Project
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
2021.10.07 - [Hi/Artificial_Intelligence] - Neural Style Transfer Neural Style Transfer What is NST? Style transfer๋ž€, ๋‘ ์˜์ƒ(content image & style image)์ด ์ฃผ์–ด์กŒ์„ ๋•Œ ๊ทธ ์ด๋ฏธ์ง€์˜ ์ฃผ๋œ ํ˜•ํƒœ๋Š” content image์™€ ์œ ์‚ฌํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉด์„œ ์Šคํƒ€์ผ๋งŒ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” style image์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐ”๊พธ๋Š” ๊ฒƒ.. forbetterdays.tistory.com ๊ธฐ์กด์˜ NST ๋ชจ๋ธ ๊ณต๋ถ€์—์„œ ํ•œ๋‹จ๊ณ„ ๋” ๊นŠ๊ฒŒ ํ•˜์—ฌ ํ”„๋กœ์ ํŠธ์— ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. What is NST (Neural Style Transfer)? - Style transfer๋ž€, ๋‘ ์˜์ƒ(content image & style image)์ด..
Neural Style Transfer
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
What is NST? Style transfer๋ž€, ๋‘ ์˜์ƒ(content image & style image)์ด ์ฃผ์–ด์กŒ์„ ๋•Œ ๊ทธ ์ด๋ฏธ์ง€์˜ ์ฃผ๋œ ํ˜•ํƒœ๋Š” content image์™€ ์œ ์‚ฌํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉด์„œ ์Šคํƒ€์ผ๋งŒ ์šฐ๋ฆฌ๊ฐ€ ์›ํ•˜๋Š” style image์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐ”๊พธ๋Š” ๊ฒƒ์„ ๋งํ•จ. Style transfer refers to changing only the style to the style image we want while keeping the main form of the image similar to the content image when two images are given. Style Transfer, image-to-image translation, ๋˜๋Š” texture transfer ๋“ฑ์œผ๋กœ ๋ถˆ๋ฆฌ๋Š”..
Liky
'Artificial_Intelligence๐Ÿค–' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (5 Page)