DCGAN(Deep Convolutional Generative Adversarial Networks)
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
- ๊ธฐ์กด์˜ GAN ๊ธฐ์กด์˜ GAN๊ณผ ๊ฐ™์€ ์ƒ์„ฑ๋ชจ๋ธ์€ ๋ ˆ์ด์–ด๋ฅผ Dense์ธต์œผ๋กœ ์—ฐ์†ํ•ด์„œ ์Œ“์•„์„œ ๊ฐ„๋‹จํ•˜๊ฒŒ Fully-connected๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๊ณ , ์ƒ์„ฑ์ž๋Š” ๊ณ„์†ํ•ด์„œ ๋žœ๋ค ๋…ธ์ด์ฆˆ๊ฐ’์„ ๋ณ€ํ™˜ํ•ด ์ด๋ฅผ ํŒ๋ณ„์ž ๋ชจ๋ธ์—๊ฒŒ ๋„˜๊ธฐ๊ณ , ํŒ๋ณ„์ž๋Š” ์ง„์งœ์ธ์ง€ ๊ฐ€์งœ์ธ์ง€ ํŒ๋ณ„ํ•˜์—ฌ ์—ฌ๊ธฐ์„œ ๋‚˜์˜ค๋Š” loss๊ฐ’์œผ๋กœ ํ•™์Šตํ•˜์—ฌ ๋งŒ๋“œ๋Š” ๊ณผ์ •. - What is DCGAN(Deep Convolutional Generative Adversarial Networks) DCGAN์€ Fully-connected ๊ตฌ์กฐ์˜ ๋Œ€๋ถ€๋ถ„์„ CNN ๊ตฌ์กฐ๋กœ ๋ฐ”๊พผ Deep Convolution GAN. ๋žœ๋ค ๋…ธ์ด์ฆˆ ๊ฐ’์„ ๋„ฃ์–ด ๋ฐฐ์น˜๋…ธ๋ฉ€๋ผ์ด์ฆˆํ•˜๋ฉด์„œ ์—…์ƒ˜ํ”Œ๋ง๊ณผ ์ปจ๋ณผ๋ฃจ์…˜์„ํ•˜๊ณ , Discriminator์—์„œ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ํ•˜๋ฉด์„œ, ๊ธฐ์กด์˜ GAN๊ณผ ๊ฐ™์ด ๋งˆ์ง€๋ง‰ ์ถœ๋ ฅ์ธต์— Flatten..
[Kaggle] ๊ฐ„๋‹จํ•œ HousePrices ์˜ˆ์ธกํ•ด๋ณด๊ธฐ
ยท
Artificial_Intelligence๐Ÿค–/Prediction
2์ฃผ ์ „์— ์บ๊ธ€๋ฌธ์ œ ํ•˜๋‚˜ ํ’€๊ณ ์‹ถ์–ด์„œ ์ฃผํƒ๊ฐ€๊ฒฉ์˜ˆ์ธก ๋Œ€ํšŒ์— ๋“ค์–ด๊ฐ”๋‹ค. ๋“ค์–ด๊ฐ€์„œ ๊ทธ๋ƒฅ ํ‰๊ท ๊ฐ’์œผ๋กœ๋งŒ ์ „๋ถ€ ๋•Œ๋ ค๋ฐ•์œผ๋ฉด ๋ช‡์ ๋‚˜์˜ฌ๊นŒ ๊ถ๊ธˆํ•ด์„œ ํ•ด๋ดค๋”๋‹ˆ 0.4์ ๋‚˜์˜ค๊ธธ๋ž˜, 1์ ์ด ๋งŒ์ ์ด ์•„๋‹Œ๊ฐ€ ๋ดค๋”๋‹ˆ 0์ ์— ๊ทผ์ ‘ํ•  ์ˆ˜๋ก ๋†’์€ ์ ์ˆ˜์˜€๋‹ค. ์•„ ๊ทธ๋ ‡๊ตฌ๋‚˜ ํ•˜๊ณ  ์ข…๋ฃŒํ–ˆ์—ˆ๋Š”๋ฐ, ์›๋ž˜ ํ•˜๋˜๊ฑฐ ๋๋‚œ ๊ธฐ๋…์œผ๋กœ 3์‹œ๊ฐ„๋™์•ˆ ๋…ธ๋ž˜๋“ค์œผ๋ฉด์„œ ๋„์ ์—ฌ๋ดค๋‹ค. import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('./house_prices'): for filename in filenames: print(os.path.join(dirname, filename)) train_data = pd.read_csv('./house_prices/train.csv'..
depthwise separable convolution(๊นŠ์ด๋ณ„ ๋ถ„๋ฆฌ ํ•ฉ์„ฑ๊ณฑ)
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
SeparableConv2D ์ž…๋ ฅ ์ฑ„๋„๋ณ„๋กœ ๋”ฐ๋กœ๋”ฐ๋กœ ๊ณต๊ฐ„ ๋ฐฉํ–ฅ์˜ ํ•ฉ์„ฑ๊ณฑ ์ˆ˜ํ–‰ ํ›„, 1*1 ํ•ฉ์„ฑ๊ณฑ (์ ๋ณ„ ํ•ฉ์„ฑ๊ณฑ)์œผ๋กœ ์ถœ๋ ฅ ์ฑ„๋„์„ ํ•ฉ์น˜๋Š” ๊ฒƒ. ์ด๋กœ ์ธํ•ด ๊ณต๊ฐ„ ํŠน์„ฑ์˜ ํ•™์Šต๊ณผ ์ฑ„๋„ ๋ฐฉํ–ฅ ํŠน์„ฑ์˜ ํ•™์Šต์„ ๋ถ„๋ฆฌํ•˜๋Š” ํšจ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์—ฐ์‚ฐ์˜ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์—ฌ์ฃผ์–ด ๋” ์ž‘๊ณ  ๋น ๋ฅธ ๋ชจ๋ธ์„ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์Œ. ์—ฌ๊ธฐ์„œ 1 * 1 ํ•ฉ์„ฑ๊ณฑ์ด๋ž€, 1 * 1 ํฌ๊ธฐ์˜ Convolution Filter ์‚ฌ์šฉํ•œ Convolution Layer๋ฅผ ๋งํ•˜๋Š”๋ฐ, Channel / Spatial์˜ ํŠน์„ฑํŒŒ์•…์— ๋„์›€์ด ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ 1*1 ํ•ฉ์„ฑ๊ณฑ์„ ์“ฐ๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ํ™•์—ฐํžˆ ์ค„๊ฒŒ ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ•ฉ์„ฑ๊ณฑ์—์„œ channel์„ ํฌ๊ฒŒ ์ฃผ๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š”๋ฐ, 1*1 ํ•ฉ์„ฑ๊ณฑ์„ ์‚ฌ์šฉํ•˜๋ฉด ํšจ์œจ์ ์œผ๋กœ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ. ์ฆ‰..
[CNN] HeatMap
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
์ €์žฅ๋œ CNN ๋ชจ๋ธ์„ ๊ฐ€์ ธ์™€์„œ ์ด๋ฅผ ์‚ฌ์šฉํ•ด ์ด๋ฏธ์ง€์˜ ํ•„ํ„ฐ๋ฅผ ๋จผ์ € ์‹œ๊ฐํ™” ํ•ด๋ณด์•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ณ ์–‘์ด์‚ฌ์ง„์„ ํ•˜๋‚˜ ๊ฐ€์ ธ์™€์„œ ์ด๋ฅผ ์ „์ฒ˜๋ฆฌํ•˜์—ฌ ์ถœ๋ ฅํ•˜์˜€๋‹ค. img_path = './dogs-vs-cats/small/test_dir/test_cats_dir/cat.1700.jpg' from keras.preprocessing import image import numpy as np img = image.load_img(img_path, target_size=(150, 150)) img_tensor = image.img_to_array(img) img_tensor = np.expand_dims(img_tensor, axis=0) # ๋ชจ๋ธ์ด ํ›ˆ๋ จ๋  ๋•Œ ์ž…๋ ฅ์— ์ ์šฉํ•œ ์ „์ฒ˜๋ฆฌ ๋ฐฉ์‹์„ ๋™์ผํ•˜๊ฒŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค img_tensor ..
RNN, CNN
ยท
Artificial_Intelligence๐Ÿค–/etc
๊ธฐ์กด Fullly Connected Layer์™€ CNN( Convolutional Neural Network)์™€ ๋‹ค๋ฅธ์  ์ด๋ฏธ์ง€ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์œ ์ง€ํ•œ ์ƒํƒœ๋กœ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“  ๋ชจ๋ธ ๊ฐ ๋ ˆ์ด์–ด์˜ ์ž…์ถœ๋ ฅ ๋ฐ์ดํ„ฐ์˜ ํ˜•์ƒ์„ ์œ ์ง€ํ•œ๋‹ค. ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํ•„ํ„ฐ๋กœ ๊ฐ ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ํ•™์Šตํ•œ๋‹ค. ์ด๋ฏธ์ง€ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์œ ์ง€ํ•˜์—ฌ ์ธ์ ‘ํ•œ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€๋“ค๊ณผ์˜ ํŠน์ง•์„ ํšจ๊ณผ์ ์œผ๋กœ ์ธ์‹ํ•œ๋‹ค. ํ•„ํ„ฐ๋Š” ๊ณต์œ  ํŒŒ๋ผ๋ฏธํ„ฐ์ด๊ธฐ์— ๊ธฐ์กด ์‹ ๊ฒฝ๋ง๋ณด๋‹ค ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์ ๋‹ค. ์ปจ๋ธŒ๋„ท์€ ์ง€์—ญ์ ์ด๊ณ  ํ‰ํ–‰ ์ด๋™์œผ๋กœ ๋ณ€ํ•˜์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ํ•™์Šตํ•จ. CNN์˜ ๊ตฌ์กฐ ์ด๋ฏธ์ง€์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜๋Š” ๋ถ€๋ถ„์ธ Convolution Layer์™€ Pooling Layer, ํด๋ž˜์Šค๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” Flatten Layer ๋ถ€๋ถ„์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ๋งˆ์ง€๋ง‰ Fully Connected N..
[gym] CartPole-v0
ยท
Artificial_Intelligence๐Ÿค–/Reinforcement Learning
import gym import time env = gym.make('CartPole-v1') #๊ฐ•ํ™”ํ•™์Šต ํ™˜๊ฒฝ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ for i_episode in range(20): # ์ƒˆ๋กœ์šด ์—ํ”ผ์†Œ๋“œ(initial environment)๋ฅผ ๋ถˆ๋Ÿฌ์˜จ๋‹ค(reset) observation = env.reset() for t in range(100): env.render() #ํ™”๋ฉด์— ์ถœ๋ ฅ / ํ–‰๋™ ์ทจํ•˜๊ธฐ ์ด์ „ ํ™˜๊ฒฝ์—์„œ ์–ป์€ ๊ด€์ฐฐ๊ฐ’(obsevation)์ ์šฉํ•ด์„œ ๊ทธ๋ฆผ time.sleep(0.05) # ํ–‰๋™(action)์„ ์ทจํ•˜๊ธฐ ์ด์ „์— ํ™˜๊ฒฝ์— ๋Œ€ํ•ด ์–ป์€ ๊ด€์ฐฐ๊ฐ’(observation) print('observation before action:') print(observation) action = env.action_space...
[CNN] Dogs vs Cats
ยท
Artificial_Intelligence๐Ÿค–/Computer Vision
์บ๊ธ€(Kaggle)์—์„œ ๋ฐ์ดํ„ฐ์…‹์„ ์ „๋ถ€ ๋‹ค์šด๋ฐ›๊ณ , smallํด๋”๋ฅผ ๋งŒ๋“ค์–ด์„œ train data, validation data, test data๋ฅผ ๊ฐ•์•„์ง€์™€ ๊ณ ์–‘์ด ๊ฐ๊ฐ 1000์žฅ, 500์žฅ, 500์žฅ์„ ๋ถ„๋ฆฌํ•ด ์ด 4์ฒœ์žฅ์— ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์‹ค์Šต์„ ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ€์ ธ์˜จ ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ๋“ค์„ ๋„คํŠธ์›Œํฌ์— ๋„ฃ๊ธฐ ์œ„ํ•ด ๋ถ€๋™ ์†Œ์ˆ˜ ํƒ€์ž…์˜ ํ…์„œ๋กœ ์ „์ฒ˜๋ฆฌ ํ•œ๋‹ค. ์ผ€๋ผ์Šค์—์„œ ์ œ๊ณต๋˜๋Š” ImageDataGenerator์€ ์ด๋ฏธ์ง€ ํŒŒ์ผ์„ ์ „์ฒ˜๋ฆฌ๋œ ๋ฐฐ์น˜ ํ…์„œ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ๋งŒ๋“œ๋Š” ํด๋ž˜์Šค์ด๋‹ค. ์ฆ‰, ์‚ฌ์ง„ ํŒŒ์ผ์„ ์ฝ๊ณ , ํƒ€์ž…์„ RGB ํ”ฝ์…€ ๊ฐ’์œผ๋กœ ๋””์ฝ”๋”ฉํ•˜๊ณ , ๋ถ€๋™ ์†Œ์ˆ˜ํƒ€์ž…์˜ ํ…์„œ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ํ”ฝ์…€๊ฐ’์˜ ์Šค์ผ€์ผ์„ 0~255์—์„œ 0~1๋กœ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์„ ์‰ฝ๊ฒŒ ๋งŒ๋“ค์–ด์ฃผ๋Š” ๋ช…๋ น์–ด์ด๋‹ค. ๋ชจ๋“ ์ด๋ฏธ์ง€๋ฅผ floatํ˜•์œผ๋กœ 255๋กœ ๋‚˜๋ˆ„์–ด ..
[AI] Boston_housing :(Linear regression)
ยท
Artificial_Intelligence๐Ÿค–/Prediction
from keras.datasets import boston_housing import numpy print(numpy.shape(boston_housing.load_data())) (train_data, train_labels), (test_data, test_labels) = boston_housing.load_data() print(len(train_data)) print(len(train_labels)) print(len(test_data)) print(len(test_labels)) print(numpy.shape(train_data)) print(numpy.shape(train_labels)) print(numpy.shape(test_data)) print(numpy.shape(test_lab..
Artificial Intelligence
ยท
Artificial_Intelligence๐Ÿค–/etc
optimizer, loss, metrics Optimizer๋Š” ํ•™์Šต ์ง„ํ–‰์„ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ฐ€์ค‘์น˜๋ฅผ ์–ด๋А ์ •๋„๋กœ ์ด๋™ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. Loss Function์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋„คํŠธ์›Œํฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธ๋ ๊ฑด์ง€ ์„ค์ •ํ•˜๊ณ , ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ตœ์ ํ™” ์‹œํ‚จ๋‹ค. ์˜ตํ‹ฐ๋งˆ์ด์ €์—๋Š” Adam, RMSprop, SGD ๋“ฑ์ด ์žˆ๋‹ค. Loss Function์€ ์˜ˆ์ธก๊ฐ’๊ณผ ์‹ค์ œ๊ฐ’๊ฐ„์˜ ์ฐจ์ด๋ฅผ ํ‘œํ˜„ํ•œ ์ˆ˜์‹์œผ๋กœ, ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ์˜ค์ฐจ๊ฐ’์ธ ํ”ผ๋“œ๋ฐฑ ์‹ ํ˜ธ๋ฅผ ์ •์˜ํ•˜๋Š” ํ•จ์ˆ˜์ด๋ฉฐ, ํ›ˆ๋ จ์„ ํ•˜๋Š” ๋™์•ˆ์— ์ตœ์†Œํ™”๊ฐ€ ๋  ๊ฐ’์„ ๋œปํ•œ๋‹ค. ์ฃผ์–ด์ง„ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์„ฑ๊ณต์ง€ํ‘œ๋ผ๊ณ  ๋งํ•œ๋‹ค. ๋กœ์Šค์—๋Š” binary_crossentropy, categorical_crossentropy ๋“ฑ์ด ์žˆ๋‹ค. Metrics๋Š” ์‹ค์ œ ํ™”๋ฉด์ƒ์— ์ถœ๋ ฅ๋˜๋Š” ๊ฐ’์„ ํ‘œํ˜„ํ•˜๋Š”..
[Reuters] single-label, multiclass classification AI
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
#์‹œ์ž‘ ๋กœ์ดํ„ฐ(Reuters) ๋‰ด์Šค ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋‹จ์ผ ๋ ˆ์ด๋ธ” ๋‹ค์ค‘ ๋ถ„๋ฅ˜ ๋ฌธ์ œ ๋‹ค๋ฃจ๊ธฐ ๋ชฉ์  : ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ 11258๊ฐœ์˜ ๊ธฐ์‚ฌ์™€ 46๊ฐœ์˜ ๋‰ด์Šค ์นดํ…Œ๊ณ ๋ฆฌ ๋ถ„๋ฅ˜. ๊ฐ ํ† ํ”ฝ์€ ์ตœ์†Œ 10๊ฐœ์ด์ƒ์˜ ์ƒ˜ํ”Œ์ด ์žˆ์Œ. from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words = 10000) #๋กœ์ดํ„ฐ ๋ฐ์ดํ„ฐ์…‹ ๊ฐ€์ ธ์˜ค๊ณ  ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณ€์ˆ˜์— ๋„ฃ์–ด์คŒ #ํ›ˆ๋ จ์šฉ๋ฐ์ดํ„ฐ์™€ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ ๋ช‡๊ฐœ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋Š”์ง€ ์ถœ๋ ฅ. print(len(train_data)) print(len(test_data)) print(train_data[1]) #2์ฐจ์› ๋ฐฐ์—ด๋กœ ๋“ค์–ด๊ฐ€์žˆ์Œ print(train_labe..
Liky
'Artificial_Intelligence๐Ÿค–' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (6 Page)