Multi-DQN An ensemble of Deep Q-learning agents for stock market forecasting

Carta, Salvatore, et al. "Multi-DQN: An ensemble of Deep Q-learning agents for stock market forecasting." Expert systems with applications 164 (2021): 113820.

 

์ฃผ์š” ํ•˜์ด๋ผ์ดํŠธ

  • A novel ensembling methodology of RL agents with different training experiences.
  • Validation of such ensemble in intraday stock market trading.
  • Different combinations of ensemble decisions in stock markets.
  • Validation in different markets and periods of trading.
  • A multi-resolution feature set, which captures data prices at multiple time frames.

 

Abstract

์ฃผ์‹ ์‹œ์žฅ ์˜ˆ์ธก์€ ์• ์ดˆ ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๊ฐ€ ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ๊ณ  ๋ถˆ์•ˆ์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ๊ณ„ ํ•™์Šต์—์„œ ๊ฐ€์žฅ ์–ด๋ ค์šด ์‘์šฉ ์ค‘์— ํ•˜๋‚˜์ž„.

๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์Šน์žฅ, ํ•˜๋ฝ์žฅ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋ฉด์„œ ์ง€๋„ํ•™์Šต์„ ๋•Œ๋ ค๋ฒ„๋ฆฌ๋Š”๋ฐ,

์ฃผ์‹์žฅ์€ ๋‹ค๋ฅธ ์‹œ์žฅ ๋™ํ–ฅ, ์ •์น˜์ ์ธ ์—ฌ๋Ÿฌ ์‚ฌ๊ฑด๊ฐ™์ด ์—ฌ๋Ÿฌ ์™ธ๋ถ€ ์š”์ธ๊ณผ๋„ ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ์žˆ๊ณ  ์˜์กดํ•˜๊ธฐ์— ๊ณผ์ ํ•ฉ ํ˜„์ƒ์ด ๋งŽ์ด ๋ฐœ์ƒํ•จ.

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ์Šน์žฅ, ํ•˜๋ฝ์žฅ ์•ˆ๋”ฐ์ง€๊ณ  ๋ชจ๋ธ ํ›ˆ๋ จ ๋‹จ๊ณ„์—์„œ ๋ฆฌ์›Œ๋“œ ๋ฐ˜ํ™˜์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฐ•ํ™”ํ•™์Šต ์ ‘๊ทผ๋ฒ•์„ ์•™์ƒ๋ธ” ํ•ด์„œ ์‚ฌ์šฉํ•˜๊ณ ์ž ํ–ˆ๊ณ , ์—ฌ๋Ÿฌ ๋ฌธ์ œ๋“ค์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค๊ณ ํ•จ.

์ด ๋ชฉํ‘œ๋ฅผ ์ด๋ฃจ๊ธฐ์œ„ํ•ด์„œ ๋™์ผํ•œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์—ฌ๋Ÿฌ ๋ฒˆ ํ›ˆ๋ จ๋œ QL ์—์ด์ „ํŠธ๋ฅผ ์•™์ƒ๋ธ” ํ•ด์„œ ํ™œ์šฉํ•จ.

๊ฒฐ๊ณผ๋กœ ๋ณด๋ฉด ์ฃผ์‹ ํ’ˆ๋ชฉ์„ ๋งค์ˆ˜ํ•˜๊ณ  ์กด๋ฒ„ํ•˜๋Š” Buy and Hold ์ „๋žต๋ณด๋‹ค ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋‹ค๊ณ ํ•จ.

 

๋…ผ๋ฌธ ๋‚ด์šฉ

๋Œ€๋ถ€๋ถ„์˜ ๋…ผ๋ฌธ์—์„œ๋Š” TA ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ฃผ์‹ ์‹œ์žฅ์˜ ์˜ˆ์ธก ๋ฌธ์ œ๋ฅผ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋กœ ์ ‘๊ทผํ•จ.

๊ทผ๋ฐ Abstract์—์„œ ๋งํ–ˆ๋‹ค ์‹ถ์ด ๋ฐ์ดํ„ฐ๊ฐ€ ํ˜ผ๋ž€์Šค๋Ÿฝ๊ณ  ๋น„์„ ํ˜•์ ์ธ๊ฑธ ๊ณ ๋ ค ์•ˆํ•˜๊ณ  ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋งŒ ๋ณด๊ธฐ์— ์–ด๋ ค์›€์ด ์žˆ์Œ.

์ด ๋…ผ๋ฌธ์—์„œ ์˜ˆ์ธก ํšŒ๊ท€ ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ ๊ฑฐ๋ž˜ ๋น„์šฉ ๊ณ ๋ คํ•˜๋Š”๊ฒŒ ์–ด๋ ต๊ณ  ์˜ˆ์ธกํ•  ๋•Œ ์ด์ „ ๊ฒฐ์ • ์‚ฌ์šฉ์•ˆํ•œ๋‹ค๊ณ  ๋งํ•˜๊ณ 

์ด ๋…ผ๋ฌธ์—์„œ๋Š” RL ์ ‘๊ทผ๋ฐฉ์‹์ด ์„ฑ๊ณต์ ์œผ๋กœ ๊ฒ€์ฆ ๋˜๊ธด ํ–ˆ๋Š”๋ฐ ์•™์ƒ๋ธ”์„ ์“ฐ์ง„ ์•Š์•„์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์•™์ƒ๋ธ” ํ•˜๊ณ ์ž ํ•œ ๊ฒƒ ๊ฐ™์Œ.

 

์ฆ‰, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋ธ๋กœ ํ•™์Šตํ•ด์„œ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ๋“ค์„ ์•™์ƒ๋ธ” ํ•˜๋Š” DQL ์ „๋žต์„ ์‚ฌ์šฉํ•˜์˜€๊ณ , ๋‹ค์–‘ํ•œ ๊ฒฐ์ • ์กฐํ•ฉ์„ ๊ณ ๋ คํ•ด์„œ ์‹คํ—˜ํ•˜๊ณ  ๊ดœ์ฐฎ์•„๋ณด์ด๋Š” ์กฐํ•ฉ์œผ๋กœ ๋ถ„์„ํ•ด๋ณด๋Š” ์ž‘์—…๋„ ํ•œ๋‹ค๊ณ ํ•จ.

3๊ฐœ์ค‘ ํ•˜๋‚˜ ํ–‰๋™ ์ •ํ•ด์„œ ํ•˜๋Š”๊ฑฐ์ž„.

  • ๊ตฌ๋งคํ•˜๊ณ  ์ข…๊ฐ€์ „์— ํŒ๋งค
  • ๋งค๋„ํ•œ ๋‹ค์Œ์— ์‹œ์žฅ๋งˆ๊ฐ์ „์— ๋งค์ˆ˜
  • ํ•˜๋ฃจ๋™์•ˆ ํˆฌ์žX

๊ฐ€๊ฒฉ ์ƒ์Šน or ํ•˜๋ฝ ์—ฌ๋ถ€์— ๋”ฐ๋ผ 
์ƒ์Šนํ• ๊ฒƒ๊ฐ™์œผ๋ฉด long action ์ทจํ•˜๊ณ 
ํ•˜๋ฝํ• ๊ฑฐ๊ฐ™์œผ๋ฉด short action ์ทจํ•˜๊ณ 
ํ™•์‹ ์•ˆ๋˜๊ณ  ๊ฐ€๊ฒฉ ์•ˆ๋ณ€ํ• ๊ฑฐ๊ฐ™์œผ๋ฉด ์•„๋ฌด๊ฒƒ๋„ X

 

์‹ฌ์ธต ๊ฐ•ํ™” ํ•™์Šต ์—์ด์ „ํŠธ ์ œ์•ˆ๋œ ์•™์ƒ๋ธ” ๋ชจ๋ธ.

ํ™˜๊ฒฝ ๋ณด๊ณ  ์—ฌ๋Ÿฌ๋ฒˆ ๋ฐ˜๋ณต์„ ์ˆ˜ํ–‰ํ•ด์„œ, ํ•™์Šตํ•œ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ๋“ค์ด ์—ฌ๋Ÿฌ ์กฐํ•ฉ์ค‘์— ์„ ํƒํ•ด์„œ ์ฃผ์‹ ๊ฑฐ๋ž˜๋ฅผ ์ˆ˜ํ–‰ํ•จ.

์—ฌ๊ธฐ์„œ ๊ฒฐ์ • ์ž„๊ณ„๊ฐ’์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒฐ์ •์„ ํ•˜๊ธฐ์œ„ํ•œ ์กฐ๊ฑด์„ ๋”ฐ๋ฅด๊ฒŒ๋Œ.

๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋‹ค์ค‘ DQN ์—์ด์ „ํŠธ์˜ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜.

์ด๋Ÿฐ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง.

 


๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ๋ฅผ ์ด์šฉํ•ด์„œ ์•™์ƒ๋ธ” ๋ชจ๋ธ ๋งŒ๋“ค์–ด์„œ ๊ฑฐ๋ž˜ํ•˜๋ฉด ์–ด๋–จ๊นŒ ํ•˜๋Š” ๋…ผ๋ฌธ.

long, short, opt-out ์ด 3๊ฐœ์˜ action์„ ์กฐํ•ฉํ•˜์—ฌ ๋น„๊ต๋ถ„์„ํ•จ.(๋งค๋„, ๋งค์ˆ˜, ํˆฌ์žX)

DQL์จ์„œ ์•™์ƒ๋ธ”๋ชจ๋ธ ๋งŒ๋“ค๊ณ  ๋„คํŠธ์›Œํฌ LSTM์œผ๋กœ ์”€.

only long ์—์ด์ „ํŠธ๋Š” ์ƒ์Šน์žฅ์—์„œ ๊ดœ์ฐฎ์€ ์„ฑ๊ณผ๋‚˜์˜ค๊ณ  long+short ์—์ด์ „ํŠธ๋Š” ํ•˜๋ฝ์žฅ์—์„œ ์ข‹์Œ.

 

์ ‘๊ทผ๋ฒ•์ƒ ๊ณผ๊ฑฐ ๊ฐ€๊ฒฉ ๋ฐ์ดํ„ฐ๋งŒ ์“ฐ๊ธฐ๊ธฐ์— ์—ฌ๊ธฐ์„œ๋Š” ๋‰ด์Šค๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ถ„์„์ด ์ถ”๊ฐ€๋กœ ํ•„์š”ํ•˜๋‹ค๊ณ ํ•จ

 

์ด๋ฅผ LSTM ๋„คํŠธ์›Œํฌ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ๋ฐ”๊พธ๊ฑฐ๋‚˜ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ฑ๋Šฅ์„ ๋†’์ด๋ฉด ์ข‹์„๋“ฏ

 
728x90
๋ฐ˜์‘ํ˜•
Liky