Tokenization์— ๋Œ€ํ•˜์—ฌ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜์€ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ์˜ ๊ฐ€์žฅ ๊ธฐ์ดˆ์— ํ•ด๋‹นํ•˜๋Š” Tokenization ์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด๊ณ  ๊ฐ ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๋“ค์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค! ํ…์ŠคํŠธ๋ฅผ ์ž˜๊ฒŒ ์ชผ๊ฐœ๋Š” ๊ธฐ์ˆ ์ด ์–ด๋–ป๊ฒŒ ์ปดํ“จํ„ฐ๊ฐ€ ์ธ๊ฐ„์˜ ์–ธ์–ด๋ฅผ ์ดํ•ดํ•˜๋„๋ก ๋•๋Š”์ง€ ํ•จ๊ป˜ ํ™•์ธํ•ด๋ด…์‹œ๋‹ค.ํ† ํฐํ™”๋ž€ ๋ฌด์—‡์ผ๊นŒ์š”? ๐Ÿค”ํ† ํฐํ™”๋Š” ๊ธด ๋ฌธ์žฅ์„ ์ž‘์€ ์กฐ๊ฐ์œผ๋กœ ๋‚˜๋ˆ„๋Š” ๊ณผ์ •์ด์—์š”. ๋งˆ์น˜ ํฐ ์ผ€์ดํฌ๋ฅผ ๋จน๊ธฐ ์ข‹๊ฒŒ ์ž๋ฅด๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”! ์ด๋ ‡๊ฒŒ ๋‚˜๋ˆˆ ์กฐ๊ฐ๋“ค์„ 'ํ† ํฐ'์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.์˜ˆ๋ฅผ ๋“ค์–ด๋ณผ๊นŒ์š”?"์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜ ๋‚ ์”จ๊ฐ€ ์ฐธ ์ข‹๋„ค์š”!" → ["์•ˆ๋…•ํ•˜์„ธ์š”", ",", "์˜ค๋Š˜", "๋‚ ์”จ๊ฐ€", "์ฐธ", "์ข‹๋„ค์š”", "!"]Tokenization์€ ๋ฌธ์žฅ์ด๋‚˜ ๋ฌธ์„œ๋ฅผ ๋ชจ๋ธ์ด ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘์€ ๋‹จ์œ„, ์ฆ‰ ํ† ํฐ๋“ค๋กœ ๋ถ„ํ• ํ•˜๋Š” ๊ณผ์ •์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€ ํ™•๋ฅ  ๋ชจ๋ธ์ด๋“  ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์ด๋“  ๊ฐ„์—, ..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]Vision language models are blind
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
๋…ผ๋ฌธ ์ •๋ณด๋…ผ๋ฌธ ์ œ๋ชฉ: Vision language models are blind๋ฐœํ–‰์ผ: 2024.07.12(๊ธˆ)์ตœ์‹  ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(VLM), ์ •๋ง๋กœ '๋ˆˆ์ด ๋จผ' ๊ฑธ๊นŒ?์ตœ๊ทผ ๋ช‡ ๋‹ฌ ์‚ฌ์ด GPT-4V(ision) ๊ฐ™์€ ๋น„์ „ ์–ธ์–ด ๋ชจ๋ธ(VLM)์˜ ๋“ฑ์žฅ์œผ๋กœ ์ด๋ฏธ์ง€-ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ์„œ๋น„์Šค๊ฐ€ ๊ธ‰์ฆํ–ˆ์Šต๋‹ˆ๋‹ค. VLM์€ ์ด๋ฏธ์ง€ ์† ๊ฐ์ฒด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์‹๋ณ„ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณต์žกํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด ๋งค์šฐ ์œ ์šฉํ•œ ๋„๊ตฌ๋กœ ์ธ์‹๋ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์‚ฌ์ง„๊ณผ ๋ฉ”๋‰ดํŒ ์ด๋ฏธ์ง€๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ…Œ์ด๋ธ” ์œ„ ๋งฅ์ฃผ ๋น„์šฉ์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ด์ฃ . ํ•˜์ง€๋งŒ ์ด VLM์ด ์ •๋ง ์ธ๊ฐ„์ฒ˜๋Ÿผ ์ด๋ฏธ์ง€๋ฅผ ์ž˜ ์ธ์‹ํ• ๊นŒ์š”? ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์„ ์ฐพ๊ธฐ ์œ„ํ•ด "BlindTest"๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ฒค์น˜๋งˆํฌ ํ…Œ์ŠคํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ VLM์˜ ํ•œ๊ณ„๋ฅผ ํƒ๊ตฌํ•œ ํฅ๋ฏธ๋กœ์šด ๋…ผ๋ฌธ์ด ๋‚˜์™”์Šต๋‹ˆ๋‹ค.์ฃผ..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ]How Far Are We from Intelligent Visual Deductive Reasoning?
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
VLM๋“ค์€ ์—ฐ์—ญ์  ์ถ”๋ก ์„ ์–ผ๋งˆ๋‚˜ ์ž˜ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์„๊นŒ?์•ˆ๋…•ํ•˜์„ธ์š”, ์—ฌ๋ฆ„๊ฐ๊ธฐ์— ๊ฑธ๋ฆฐ ๋ธ”๋กœ๊ทธ ์ฃผ์ธ์žฅ์ž…๋‹ˆ๋‹ค.์˜ค๋Š˜์€ VLM(Vision and Language Model)๊ณผ ๊ด€๋ จ๋œ ๋…ผ๋ฌธ์„ ์†Œ๊ฐœํ•ด๋“œ๋ฆฌ๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋‹น ๋…ผ๋ฌธ์˜ ์ œ๋ชฉ์€ How Far Are We from Intelligent Visual Deductive Reasoning? ์œผ๋กœ APPLE ์‚ฌ์—์„œ 2024๋…„ 3์›”์— ๊ณต๊ฐœํ•œ ๋…ผ๋ฌธ์ด๋ฉฐ, ICLR 2024 AGI Workshop์—์„œ ๋ฐœํ‘œํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค. ์ผ๋‹จ Background ์ง€์‹์„ ์งš๊ณ  ๋„˜์–ด๊ฐˆ๊ฒŒ์š”.๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ(Multi-modal)์ด ๋ญ˜๊นŒ์š”?์ฒจ๋ถ€์‚ฌ์ง„์ด ๋„ˆ๋ฌด ์งœ์น˜๊ธด(?)ํ•œ๋ฐ, ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ์ด๋ž€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ฐ๊ฐ์ด๋‚˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ๋‹ค๋ฃฌ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.์˜ˆ๋ฅผ ๋“ค์–ด, ์‚ฌ๋žŒ์€ ๋ˆˆ์œผ๋กœ ๋ณธ ๊ฒƒ๊ณผ ๊ท€๋กœ ๋“ค์€ ๊ฒƒ์„ ๋™์‹œ์— ์ดํ•ดํ•  ์ˆ˜..
5๋ถ„์•ˆ์— LLM Leaderboard ์ˆœ์œ„๊ถŒ ๋“ค๊ธฐ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์—ฌ๋Ÿฌ๋ถ„, Merge Model ์ด๋ผ๊ณ  ์•„์‹œ๋‚˜์š”?์ €๋Š” ์ž‘๋…„ ๊ฒจ์šธ์— ํ—ˆ๊น…ํŽ˜์ด์Šค Open LLM Leaderboard๋ฅผ ๋ณด๋‹ค๊ฐ€ ์•Œ๊ฒŒ๋œ ๊ธฐ์ˆ ์ด์—์š”.๊ทธ ๋‹น์‹œ, ์นด์นด์˜ค๋ฑ…ํฌ์‚ฌ์˜ ์นด๋ณธ๋นŒ๋Ÿฐ ๋ชจ๋ธ์ด SLERP ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•ด์„œ 1,2,3 ๋“ฑ์„ ๋‹ฌ์„ฑํ•œ ์ ์ด ์žˆ์—ˆ์–ด์š”.ํ•™์Šต์—†์ด ๋ฆฌ๋”๋ณด๋“œ 1๋“ฑ์ด๋ผ๊ณ …? ํ•˜๋ฉฐ ๋†€๋ž๋˜ ๊ธฐ์–ต์ด ์žˆ๋„ค์š”. Model Merging์ด๋ž€ ๋‘ ๊ฐœ ์ด์ƒ์˜ LLM๋“ค์„ ๋‹จ์ผ ๋ชจ๋ธ๋กœ ๊ฒฐํ•ฉํ•˜๋Š” ๊ธฐ์ˆ ์ด์—์š”.๊ฐ„๋‹จํ•œ ์˜ˆ์‹œ๋ฅผ ๋“ค์–ด๋ณผ๊นŒ์š”?์š”๋ฆฌ๋ฅผ ํ•  ๋•Œ, ๊ฐ ์š”๋ฆฌ์‚ฌ๊ฐ€ ์ž์‹ ๋งŒ์˜ ํŠน๊ธฐ ์š”๋ฆฌ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ํ•œ ์š”๋ฆฌ์‚ฌ๋Š” ํŒŒ์Šคํƒ€์— ๋›ฐ์–ด๋‚˜๊ณ , ๋‹ค๋ฅธ ์š”๋ฆฌ์‚ฌ๋Š” ์Šคํ…Œ์ดํฌ์— ๋›ฐ์–ด๋‚ฉ๋‹ˆ๋‹ค. Merge Model์€ ์ด ์š”๋ฆฌ์‚ฌ๋“ค์ด ํ•จ๊ป˜ ๋ชจ์—ฌ ํŒŒ์Šคํƒ€์™€ ์Šคํ…Œ์ดํฌ๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜๋Š” ์ตœ๊ณ ์˜ ์ฝ”์Šค๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ฐ๊ฐ์˜ ์š”๋ฆฌ์‚ฌ์˜ ์žฅ์ ์„ ์‚ด๋ฆฌ๋ฉด์„œ, ์ตœ์ข…์ ์œผ..
Decoding ๊ธฐ๋ฒ• ์ •๋ฆฌ
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
- Greedy Search - ํ˜„์žฌ ๋‹จ์–ด ๋‹ค์Œ์— ๋‚˜์˜ฌ ๋‹จ์–ด ํ›„๋ณด ์ค‘ ๊ฐ€์žฅ ํ™•๋ฅ ์ด ๋†’์€ ๊ฒƒ ์„ ํƒ - (์žฅ์ ) ๋น„๊ต์  ๊ฐ„๋‹จํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ - (๋‹จ์ ) ๋™์–ด ๋ฐ˜๋ณต ํ˜„์ƒ ๋ฐœ์ƒ - (๋‹จ์ ) ํ˜„์žฌ ์‹œ์  ๋ฐ”๋กœ ๋‹ค์Œ ๋‹จ์–ด๋งŒ ๊ณ ๋ ค. - Beam Search - ํ˜„์žฌ์‹œ์  ์ดํ›„ ์—ฌ๋Ÿฌ step์˜ ๋‹จ์–ด ์กฐํ•ฉ์„ keep ํ•ด๋†“๊ณ  ํ•ด๋‹น ํ™•๋ฅ ์„ ๊ณฑํ•˜์—ฌ ์ ์ˆ˜๋ฅผ ๋‚ด๊ณ  ๋‹ค๋ฅธ ์กฐํ•ฉ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์žฅ ๋†’์€ ๊ฒƒ ์„ ํƒ - (์žฅ์ ) ๋’ค์— ๋‚˜์˜ฌ ํ™•๋ฅ ์ด ๋†’์€ ๋‹จ์–ด๋ฅผ ์„ ํƒํ•˜์—ฌ ์ข€ ๋” ์ข‹์€ ๋ฌธ์žฅ ์ƒ์„ฑ - (๋‹จ์ ) ์—ฐ์‚ฐ์†๋„ ์ฆ๊ฐ€ - (๋‹จ์ ) ๋ฐ˜๋ณต๋ฌธ์ œ ์—ฌ์ „ํžˆ ์กด์žฌ → n-gram(์—ฐ์†๋œ ๋‹จ์–ด ๊ฐœ์ˆ˜ ํ—ˆ์šฉ๋ฒ”์œ„) ์‚ฌ์šฉ - num_beams → Beam Search์— ์“ฐ์ด๋Š” beam์˜ ๊ฐœ์ˆ˜ - no_repeat_ngram_size → ํŠน์ • n-gram์ด ์ƒ์„ฑ๋ฌธ์žฅ ๋‚ด์—์„œ..
๊ฐ„๋‹จํ•œ ์ž์—ฐ์–ด ๋ถ„์„
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
1. ๊ฐ ๋ผ๋ฒจ๋ณ„ ๊ฐ€์žฅ ๋งŽ์ด ๋‚˜์˜ค๋Š” ๋‹จ์–ด ์ฐพ๊ธฐ from collections import Counter import pandas as pd df = pd.read_csv('train.csv') uniqueLabel = df['label'].unique() for Label in uniqueLabel: temp_df = df[df['label'] == Label] words = ' '.join(temp_df['sentence']).split() word_counts = Counter(words) most_common_word = word_counts.most_common(5) print(f"'{Label}'์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ๋‚˜์˜ค๋Š” ๋‹จ์–ด: {most_common_word}") 2. ๊ฐ ๋ผ๋ฒจ ๋ณ„ ๋ถ„ํฌ๋„ ์ฒดํฌ im..
Transformer_Encoder (ํŠธ๋žœ์Šคํฌ๋จธ ์ธ์ฝ”๋” ์‰ฝ๊ณ  ์ž์„ธํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๊ธฐ)
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์˜ค๋Š˜์€ ํŠธ๋žœ์Šคํฌ๋จธ์˜ ์ธ์ฝ”๋” ๋ถ€๋ถ„์„ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜๊ณ ์žํ•จ. ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ํŠธ๋žœ์Šคํฌ๋จธ์˜ ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด์„œ ๋ฌผ์–ด๋ณด๋ฉด "Self-attention ๊ธฐ๋ฒ• ์‚ฌ์šฉ... ํŠน์ • ๋‹จ์–ด์— ํฌ์ปค์‹ฑ.." ํ˜น์€ "Q,K,V ์‚ฌ์šฉํ•ด์„œ...์กฐํ•ฉํ•ด์„œ ๊ฐ€์ค‘์น˜์ฃผ๋Š” ๊ธฐ๋ฒ•..." ์ •๋„๋กœ๋งŒ ๋Œ€๋‹ตํ•จ. ์‹ค์ œ ์–ด๋–ค ์‹์œผ๋กœ ๋Œ์•„๊ฐ€๋Š”์ง€ ์‰ฝ๊ณ  ์ž์„ธํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ํฌ์ŠคํŒ…์„ ์ง„ํ–‰ํ•จ. ์• ๋งคํ•˜๊ฒŒ ์•„๋Š” ๋ถ„ ํ™˜์˜ ํŠธ๋žœ์Šคํฌ๋จธ์˜ ์ธ์ฝ”๋” ๋ ˆ์ด์–ด๋Š” ๊ทธ๋ฆผ์—์„œ ๋ณด์ด๋‹ค ์‹ถ์ด ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ๋‚˜๋ˆ ๋ณผ ์ˆ˜ ์žˆ์Œ. - ๋ฉ€ํ‹ฐํ—ค๋“œ ์…€ํ”„์–ดํ…์…˜ - ํฌ์ง€์…”๋‹ ์™€์ด์ฆˆ ํ”ผ๋“œํฌ์›Œ๋“œ ๋‰ด๋Ÿด๋„คํŠธ์›Œํฌ - ์—๋””์…˜ ์•ค ๋ ˆ์ด์–ด ๋…ธ๋ง๋ฆฌ์ œ์ด์…˜ ํ•œ๊ธ€๋กœ ์“ฐ๋‹ˆ ํ˜•ํŽธ์—†์–ด ๋ณด์ด๊ธด ํ•˜์ง€๋งŒ ๊ทธ๋ƒฅ ๋„˜์–ด๊ฐ€๊ฒ ์Œ. ์ผ๋‹จ ์ž…๋ ฅ ๋ฌธ์žฅ์ด ๋ชจ๋ธ์— ์ž…๋ ฅ๋˜๋ฉด > ํฌ์ง€์…”๋‹ ์ธ์ฝ”๋”ฉ์„ ํ†ต๊ณผ > ๋ฒกํ„ฐํ™”(๊ฐ ๋‹จ์–ด์˜ ์œ„์น˜์ •๋ณด๊ฐ€ ํฌํ•จ)๋œ ์ž…๋ ฅ ๋ฌธ์žฅ์ด ๋“ค์–ด์˜ด..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] CNM: An Interpretable Complex-valued Network for Matching
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์–‘์ž์—ญํ•™์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ๊ณต๋ถ€ํ•˜์˜€์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์–ด๋Š์ •๋„ ์ดํ•ดํ•œ ๋‹ค์Œ ์–‘์ž์ปดํ“จํŒ…, ์–‘์žAI์— ๋Œ€ํ•ด์„œ ๊ด€๋ จ๋œ ์—ฌ๋Ÿฌ ๋…ผ๋ฌธ๋“ค์„ ์ฐพ์•„๋ณด๊ณ  ๊ณต๋ถ€ํ•˜์˜€๋Š”๋ฐ, ์ž์—ฐ์–ด๋ฅผ ์–‘์ž์—ญํ•™๊ณผ ์œตํ•ฉํ•œ ๋…ผ๋ฌธ์ด๋ฉด์„œ ๋™์‹œ์— NAACL์—์„œ Award๋ฐ›์€ ๋…ผ๋ฌธ์ด๋ผ ์ฝ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. Paper Description ์ œ๋ชฉ : CNM: An Interpretable Complex-valued Network for Matching ์ €์ž : Li et al. Date : 2021.06 ์ธ์šฉ์ˆ˜ : 53 Publisher : Association for Computational Linguistics Venue : NAACL(North American Chapter of the Association for Computational Linguistics) Awa..
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] Emoberta: Speaker-aware emotion recognition in conversation with roberta
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
Kim, Taewoon, and Piek Vossen. "Emoberta: Speaker-aware emotion recognition in conversation with roberta." arXiv preprint arXiv:2108.12009 (2021). introduction ๊ฐ์ • ์ธ์‹์˜ ๋ฒ”์œ„๋Š” ํ‘œ์ •, ์Œ์„ฑ,ํ…์ŠคํŠธ ๋“ฑ ๋งค์šฐ ๋„“์Œ. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ์ • ์ธ์‹์˜ ํ•˜์œ„ ๋ถ„์•ผ์ธ ๋Œ€ํ™”์—์„œ ๊ฐ์ • ์ธ์‹( ERC)์— ์ค‘์ ์„ ๋‘ . ERC๋Š” ํ•œ์‚ฌ๋žŒ ๋˜๋Š” ๊ทธ ์ด์ƒ์˜ ์‚ฌ๋žŒ๊ณผ ๋Œ€ํ™”์— ์ฐธ์—ฌํ•˜๋Š” ํ˜„์žฌ ํ™”์ž์˜ ๊ฐ์ •์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ ๊ฐ์ •์„ ์ธ์‹ํ•˜๋Š” ๊ฒƒ์€ ๊ฐ์„ฑ ์ปดํ“จํŒ… ๋ฐ ์ธ๊ฐ„-๋กœ๋ด‡ ํ†ต์‹ ๊ณผ ๊ฐ™์€ ๋ถ„์•ผ์—์„œ ์ค‘์š”. ์ธ๊ฐ„์€ ๋Œ€ํ™”(์‹œ๊ฐ, ์Œ์„ฑ ๋“ฑ)์„ ํ•˜๊ธฐ์œ„ํ•ด ์—ฌ๋Ÿฌ ๊ฐ๊ฐ ์ž…๋ ฅ์„ ์‚ฌ์šฉํ•จ ๋”ฐ๋ผ์„œ ERC ์ž‘์—…์—๋Š” ์—ฌ๋Ÿฌ ์–‘์‹(์‹œ๊ฐ, ์˜ค๋””์˜ค, ํ…์ŠคํŠธ..
๊ฐ์ •์„ ๋…น์ธ KoGPT ๊ธฐ๋ฐ˜ ์ฑ—๋ด‡ ์ œ์ž‘
ยท
Artificial_Intelligence๐Ÿค–/Natural Language Processing
์ฃผ์ œ : ์ค‘๊ณ ๋“ฑํ•™์ƒ์„ ์œ„ํ•œ ํ•™๊ณผ ๊ต์ˆ˜๋‹˜ ์ธํ„ฐ๋ทฐ ์ฑ—๋ด‡ ์˜์˜ : ๋Œ€ํ•™ ์ง„ํ•™ ์ „, ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ! ๊ฒฐ๊ณผ ๋ฏธ๋ฆฌ๋ณด๊ธฐ : ํ•™์Šต์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ์…‹ : ํ•™๊ณผ์˜ ๊ฐœ์ˆ˜๋Š” ์ด 320๊ฐœ๊ฐ€ ์žˆ์œผ๋ฉฐ, ํ‰๊ท  ์งˆ์˜์‘๋‹ต ๊ฐœ์ˆ˜๋Š” 11์Œ, ์ตœ๋Œ€ 19์Œ ๊นŒ์ง€ ์ด์–ด์ง‘๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ์…‹์˜ ๋Œ€ํ‘œ ์งˆ๋ฌธ: 1.๊ต์ˆ˜๋‹˜๊ป˜์„œ ์ „๊ณต ์„ ํƒํ•œ ๋™๊ธฐ์ด ๋ฌด์—‡์ธ๊ฐ€์š” 2.์–ด๋–ค ๋ถ„์•ผ์— ๊ด€์‹ฌ ๊ฐ–๋Š” ์‚ฌ๋žŒ์ด ์ด ํ•™๊ณผ๋กœ ์˜ค๋ฉด ์ข‹์„๊นŒ์š” 3.์ด ํ•™๊ณผ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ณต๋ถ€๋Š” ์–ด๋–ค ๋‚ด์šฉ์ธ๊ฐ€์š” 4.์ด ํ•™๊ณผ์—์„œ ๊ณต๋ถ€ ์ž˜ํ• ๋ ค๋ฉด ์ค‘๊ณ ๋“ฑํ•™์ƒ๋•Œ ์–ด๋–ค ๊ต๊ณผ๋ชฉ์„ ๊ณต๋ถ€ํ•˜๋ฉด ์ข‹์€๊ฐ€์š” 5.์ด ํ•™๊ณผ์˜ ์žฅ์ ์€ ๋ญ”๊ฐ€์š” 6.์ด ํ•™๊ณผ์˜ ํ•™์ƒ๋“ค์ด ๊ฒช๋Š” ์–ด๋ ค์›€์€ ๋ญ”๊ฐ€์š” 7.ํ•™๊ณผ ์กธ์—…์ƒ์ด ๊ฐ€์žฅ ๋งŽ์ด ์ง„์ถœํ•˜๋Š” ์ง์—…๋ถ„์•ผ๋Š” ์–ด๋Š ๊ณณ์ธ๊ฐ€์š” 8.ํ•™๊ณผ์˜ ์•ž์œผ๋กœ์˜ ์ „๋ง์€ ์–ด๋–ค๊ฐ€์š” 9.์ง€๊ธˆ์€ ์—†์ง€๋งŒ ์•ž์œผ๋กœ ์ƒˆ๋กœ ์ƒ๊ธฐ๊ฒŒ..
Liky
'Artificial_Intelligence๐Ÿค–/Natural Language Processing' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก